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Observations:
q Inefficient data layout incurs redundant shifts

q Bit-parallel modular multiplication has unnecessary carry propagations

Contribution 1:
Shift-optimized data layout to avoid redundant shifts

Contribution 2:
Carry-save modular multiplication to avoid carry propagations
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BP-NTT repurposes LLC to perform bitline computing
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High Throughput
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q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum:

0 0 0 1Carry:
0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:
……

Carry-propagation
Addition Complexity: O(n) 

1 1 1 1
0 0 0 1+
1 1 1 0Sum: XOR
0 0 0 1 ANDCarry:

Carry-save Addition
Complexity: O(1) 

BP-NTT

XOR
AND

XOR
AND

n iters

4-bit inputs

4-bit results

Check paper for details
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Security & Flexibility

Throughput & Low-overhead

Latency



Evaluation Methodology
q Tools:

o PyMTL3 and OpenRAM for generating SRAM arrays
o Synopsys Design Compiler for extracting latencies
o Cadence Innovus for area consumption

q The array size of BP-NTT is 256×256 following the ARM Cortex-M0+ 
microcontroller

q Area consumptions of in-ReRAM baselines are from DESTINY simulator
o Optimistically estimated with only subarray area consumption excluding complex 

peripheral circuitry

20

Jiang, Shunning, et al. “PyMTL3: A Python framework for open-source hardware modeling, generation, simulation, and verification.” MICRO’20.
Guthaus, Matthew R., et al. "OpenRAM: An open-source memory compiler." ICCAD’16.
Poremba, Matt, et al. "Destiny: A tool for modeling emerging 3d nvm and edram caches." DATE’15.
Nagarajan, Karthikeyan, et al. "SHINE: A novel SHA-3 implementation using ReRAM-based in-memory computing." ISLPED’19
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Flexibility Analysis
q With fixed polynomial order of 256

22

q With fixed bitwidth of 16

Parallelism decreases with
increased bitwidth

Extra shift overhead is
introduced to handle large

polynomial order
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BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

BP-NTT employs bit-parallel modular multiplication

BP-NTT can achieve up to 138x throughput-per-power 
than state-of-the-art with minimal area
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