


BP-NTT: Fast and Compact in-SRAM 
Number Theoretic Transform with 
Bit-Parallel Modular Multiplication

Jingyao Zhang*, Mohsen Imani†, Elaheh Sadredini*

* †



Lattice-based Cryptography is the Future

3

Homomorphic EncryptionPost-quantum Cryptography

q Polynomial Multiplication is the bedrock 



Lattice-based Cryptography is the Future

3

Homomorphic EncryptionPost-quantum Cryptography

Polynomial Multiplication

q Polynomial Multiplication is the bedrock 



Polynomial Multiplication is the Bedrock

4

q Number Theoretic Transform (NTT) is necessary



Polynomial Multiplication is the Bedrock

4

a0
a1
a2
a3

b0
b1
b2
b3

Polynomial Multiplication
Complexity: O(n2) 

q Number Theoretic Transform (NTT) is necessary



Polynomial Multiplication is the Bedrock

4

a0
a1
a2
a3

b0
b1
b2
b3

Polynomial Multiplication
Complexity: O(n2) 

a0
a1
a2
a3

b0
b1
b2
b3

a0
a1
a2
a3

b0
b1
b2
b3

NTT

NTT

p0
p1
p2
p3

NTT -1 c0
c1
c2
c3

After NTT
Complexity: O(nlogn) 

q Number Theoretic Transform (NTT) is necessary



NTT Acceleration is Essential

5

q From profiling, 32~50% of execution time is spent on NTT/InvNTT



NTT Acceleration is Essential

5

q From profiling, 32~50% of execution time is spent on NTT/InvNTT



NTT Acceleration is Essential

5

Keccak
32%

NTT&InvNTT
32%

CRYSTAL-KYBER

q From profiling, 32~50% of execution time is spent on NTT/InvNTT



NTT Acceleration is Essential

5

Keccak
28%

NTT&InvNTT
50%

CRYSTAL-DILITHIUM

Keccak
32%

NTT&InvNTT
32%

CRYSTAL-KYBER

q From profiling, 32~50% of execution time is spent on NTT/InvNTT



NTT Acceleration is Hard!

6

Ø Complicated data dependencies
Ø Heavy multiplication with division-based modulo operation

Polynomial
coefficients
before NTT

Polynomial
coefficients
after NTT

3-stage Cooley-Tukey butterfly



NTT Acceleration is Hard!

6

Ø Complicated data dependencies
Ø Heavy multiplication with division-based modulo operation

Polynomial
coefficients
before NTT

Polynomial
coefficients
after NTT

3-stage Cooley-Tukey butterfly



NTT Acceleration is Hard!

6

Ø Complicated data dependencies
Ø Heavy multiplication with division-based modulo operation

Polynomial
coefficients
before NTT

Polynomial
coefficients
after NTT

3-stage Cooley-Tukey butterfly



ASIC
LEIA [CICC ’18], Sapphire [ISSCC ’19], …

q Low efficiency
o Frequent data movement

q Limited flexibility
o Dedicated modular multiplier

Existing Solutions

7



ASIC
LEIA [CICC ’18], Sapphire [ISSCC ’19], …

q Low efficiency
o Frequent data movement

q Limited flexibility
o Dedicated modular multiplier

Existing Solutions

7



ASIC
LEIA [CICC ’18], Sapphire [ISSCC ’19], …

q Low efficiency
o Frequent data movement

q Limited flexibility
o Dedicated modular multiplier

Existing Solutions

7



ASIC
LEIA [CICC ’18], Sapphire [ISSCC ’19], …

q Low efficiency
o Frequent data movement

q Limited flexibility
o Dedicated modular multiplier

Existing Solutions

7



ASIC
LEIA [CICC ’18], Sapphire [ISSCC ’19], …

q Low efficiency
o Frequent data movement

q Limited flexibility
o Dedicated modular multiplier

Existing Solutions

7

How to achieve efficient & flexible NTT acceleration? 



ASIC
LEIA [CICC ’18], Sapphire [ISSCC ’19], …

q Low efficiency
o Frequent data movement

q Limited flexibility
o Dedicated modular multiplier

Existing Solutions

7

How to achieve efficient & flexible NTT acceleration? 

Compute-in-Memory
Recryptor [JSSC ’18], Duality Cache [ISCA ’19], …

q Potential high efficiency
o Reduced data movement

q High flexibility
o General vector processing units



ASIC
LEIA [CICC ’18], Sapphire [ISSCC ’19], …

q Low efficiency
o Frequent data movement

q Limited flexibility
o Dedicated modular multiplier

Existing Solutions

7

How to achieve efficient & flexible NTT acceleration? 

Compute-in-Memory
Recryptor [JSSC ’18], Duality Cache [ISCA ’19], …

q Potential high efficiency
o Reduced data movement

q High flexibility
o General vector processing units



ASIC
LEIA [CICC ’18], Sapphire [ISSCC ’19], …

q Low efficiency
o Frequent data movement

q Limited flexibility
o Dedicated modular multiplier

Existing Solutions

7

How to achieve efficient & flexible NTT acceleration? 

Compute-in-Memory
Recryptor [JSSC ’18], Duality Cache [ISCA ’19], …

q Potential high efficiency
o Reduced data movement

q High flexibility
o General vector processing units



Challenges for Memory-Centric NTT

8

Observations:
q Inefficient data layout incurs redundant shifts

q Bit-parallel modular multiplication has unnecessary carry propagations



Challenges for Memory-Centric NTT

8

Observations:
q Inefficient data layout incurs redundant shifts

q Bit-parallel modular multiplication has unnecessary carry propagations



Challenges for Memory-Centric NTT

8

Observations:
q Inefficient data layout incurs redundant shifts

q Bit-parallel modular multiplication has unnecessary carry propagations

Contribution 1:
Shift-optimized data layout to avoid redundant shifts



Challenges for Memory-Centric NTT

8

Observations:
q Inefficient data layout incurs redundant shifts

q Bit-parallel modular multiplication has unnecessary carry propagations

Contribution 1:
Shift-optimized data layout to avoid redundant shifts



Challenges for Memory-Centric NTT

8

Observations:
q Inefficient data layout incurs redundant shifts

q Bit-parallel modular multiplication has unnecessary carry propagations

Contribution 1:
Shift-optimized data layout to avoid redundant shifts

Contribution 2:
Carry-save modular multiplication to avoid carry propagations



Overview of Our Solution: BP-NTT

9



Overview of Our Solution: BP-NTT

9

BP-NTT repurposes LLC to perform bitline computing



High security

Overview of Our Solution: BP-NTT

9

BP-NTT repurposes LLC to perform bitline computing

High Throughput



High security

Overview of Our Solution: BP-NTT

9

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

High Throughput



High security

Overview of Our Solution: BP-NTT

9

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

High Throughput

Low Latency Low Energy



High security

Overview of Our Solution: BP-NTT

9

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

High Throughput

Low Latency Low Energy

BP-NTT employs bit-parallel modular multiplication



High security

Overview of Our Solution: BP-NTT

9

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

High Throughput

Low Latency Low Energy

BP-NTT employs bit-parallel modular multiplication

Low Latency Small Area



High security

Overview of Our Solution: BP-NTT

10

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

High Throughput

Low Latency Low Energy

BP-NTT employs bit-parallel modular multiplication

Low Latency Small Area



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



BP-NTT: Repurposed LLC
q BP-NTT repurposes LLC to perform bitline computing [1]

o High security
o High parallelism
o < 2% area overhead in 256x256 array

11[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



High security

Overview of Our Solution: BP-NTT

12

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

High Throughput

Low Latency Low Energy

BP-NTT employs bit-parallel modular multiplication

Low Latency Small Area



Motivation for Shift-optimization
q ~50% operations of 256-point 16-bit NTT are shifting in bit-serial

q Shifting destroys parallelism due to bit-by-bit shift fashion

13



Motivation for Shift-optimization
q ~50% operations of 256-point 16-bit NTT are shifting in bit-serial

q Shifting destroys parallelism due to bit-by-bit shift fashion

13



Motivation for Shift-optimization
q ~50% operations of 256-point 16-bit NTT are shifting in bit-serial

q Shifting destroys parallelism due to bit-by-bit shift fashion

13



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

ζ 1ζ 1ζ 1ζ 1

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7
ζ 1ζ 1ζ 1ζ 1

Step 1: Modular mult

M
odularm

ult



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

Step 1: Modular mult

M
odularm

ult

t 3t 2t 1t 0
a 4 a 5 a 6 a 7



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

Step 1: Modular mult
Step 2: Shift & Write back

Shiftt 3t 2t 1t 0



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts
a 0 a 1 a 2 a 3

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub

t 3t 2t 1t 0 Add&Sub



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

a 7a 6a 5a 4Shift



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

Write back



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

Write back



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

Write back

BP-NTT



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

Write back 8
ro

w
s

n-bit
a0
a1
a2
a3

a6
a7
ζ1

a5
a4

BP-NTT



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

Write back 8
ro

w
s

n-bit
a0
a1
a2
a3

a6
a7
ζ1

a5
a4

Step 1: Modular mult

Bit-parallel
Modular

mult

ζ1

a4

BP-NTT



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

Write back 8
ro

w
s

n-bit
a0
a1
a2
a3

a6
a7
ζ1

a5
a4a4

t0

Step 1: Modular mult

Bit-parallel
Modular

mult
BP-NTT



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

Write back 8
ro

w
s

n-bit
a0
a1
a2
a3

a6
a7
ζ1

a5
a4a4

t0

Step 1: Modular mult
Step 2: Add & Sub

Add

SubBP-NTT

a0



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

Write back 8
ro

w
s

n-bit
a0
a1
a2
a3

a6
a7
ζ1

a5
a4a4

t0

Step 1: Modular mult
Step 2: Add & Sub

Add

SubBP-NTT

a0a0

a4



BP-NTT: Shift-optimized Data Alignment

14

q Inefficient data layout incurs redundant shifts
q 4-step stage is simplified into 2-step

a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7

n
bi

ts

a 4 a 5 a 6 a 7

Step 1: Modular mult
Step 2: Shift & Write back
Step 3: Add & Sub
Step 4: Shift & Write back

Write back 8
ro

w
s

n-bit
a0
a1
a2
a3

a6
a7
ζ1

a5
a4a4

t0

Step 1: Modular mult
Step 2: Add & Sub

Add

SubBP-NTT

a0a0

a4



BP-NTT: Shift-optimized Data Alignment
q Shift-optimized Data Alignment

o Place coefficient per row
o No shift operations to align data
o Enable bit-parallel multiplication

15

a0
a1
a2
a3
a4

a6
a7
t0

Step 1: Modular mult
Step 2: Add & Sub

8
ro

w
s

16-bit

Add
a5

Sub



BP-NTT: Shift-optimized Data Alignment
q Shift-optimized Data Alignment

o Place coefficient per row
o No shift operations to align data
o Enable bit-parallel multiplication

15

a0
a1
a2
a3
a4

a6
a7
t0

Step 1: Modular mult
Step 2: Add & Sub

8
ro

w
s

16-bit

Add
a5

Sub



BP-NTT: Shift-optimized Data Alignment
q Shift-optimized Data Alignment

o Place coefficient per row
o No shift operations to align data
o Enable bit-parallel multiplication

15

a0
a1
a2
a3
a4

a6
a7
t0

Step 1: Modular mult
Step 2: Add & Sub

8
ro

w
s

16-bit

Add
a5

Sub



BP-NTT: Shift-optimized Data Alignment
q Shift-optimized Data Alignment

o Place coefficient per row
o No shift operations to align data
o Enable bit-parallel multiplication

15

a0
a1
a2
a3
a4

a6
a7
t0

Step 1: Modular mult
Step 2: Add & Sub

8
ro

w
s

16-bit

Add
a5

Sub



High security

Overview of Our Solution: BP-NTT

16

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

High Throughput

Low Latency Low Energy

BP-NTT employs bit-parallel modular multiplication

Low Latency Small Area



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

Multiplication
Complexity: O(n2) 



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

Multiplication
Complexity: O(n2) 



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

1 1 1 1
1 1 1 1×
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1+
+

+

0 0 0 11 1 1 0
Multiplication

Complexity: O(n2) 



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

1 1 1 1
1 1 1 1×
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1+
+

+

0 0 0 11 1 1 0
Multiplication

Complexity: O(n2) 



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

1 1 1 1
1 1 1 1×
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1+
+

+

0 0 0 11 1 1 0
Multiplication

Complexity: O(n2) 



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

1 1 1 1
1 1 1 1×
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1+
+

+

0 0 0 11 1 1 0
Multiplication

Complexity: O(n2) 



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

1 1 1 1
1 1 1 1×
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1+
+

+

0 0 0 11 1 1 0

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum: XOR
AND

0 0 0 1Carry:
XOR
AND

0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:

n iters

……Multiplication
Complexity: O(n2) Addition



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

1 1 1 1
1 1 1 1×
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1+
+

+

0 0 0 11 1 1 0

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum: XOR
AND

0 0 0 1Carry:
XOR
AND

0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:

n iters

……Multiplication
Complexity: O(n2) Addition Complexity: O(n) Addition



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

1 1 1 1
1 1 1 1×
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1+
+

+

0 0 0 11 1 1 0

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum: XOR
AND

0 0 0 1Carry:
XOR
AND

0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:

n iters

……Multiplication
Complexity: O(n2) Addition Complexity: O(n) Addition



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

1 1 1 1
1 1 1 1×
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1+
+

+

0 0 0 11 1 1 0

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum: XOR
AND

0 0 0 1Carry:
XOR
AND

0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:

n iters

……Multiplication
Complexity: O(n2) Addition Complexity: O(n) Addition



Motivation for carry-save multiplication
q Multiplication is based on multiple additions
q Carry propagation ruins the parallelism from in-SRAM computing

o High computing complexity
o Low parallelism (require extra columns for overflow bits)

17

1 1 1 1
1 1 1 1×
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1+
+

+

0 0 0 11 1 1 0

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum: XOR
AND

0 0 0 1Carry:
XOR
AND

0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:

n iters

……Multiplication
Complexity: O(n2) Addition Complexity: O(n) 

4-bit inputs

8-bit result

Addition4-bit result
mod

mult



BP-NTT: Bit-Parallel Modular Multiplication

18

q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition



BP-NTT: Bit-Parallel Modular Multiplication

18

q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition



BP-NTT: Bit-Parallel Modular Multiplication

18

q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum:

0 0 0 1Carry:
0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:
……

Carry-propagation
Addition Complexity: O(n) 

XOR
AND

XOR
AND

n iters



BP-NTT: Bit-Parallel Modular Multiplication

18

q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum:

0 0 0 1Carry:
0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:
……

Carry-propagation
Addition Complexity: O(n) 

BP-NTT

XOR
AND

XOR
AND

n iters



BP-NTT: Bit-Parallel Modular Multiplication

18

q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum:

0 0 0 1Carry:
0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:
……

Carry-propagation
Addition Complexity: O(n) 

1 1 1 1
0 0 0 1+
1 1 1 0Sum: XOR
0 0 0 1 ANDCarry:

Carry-save Addition
Complexity: O(1) 

BP-NTT

XOR
AND

XOR
AND

n iters



BP-NTT: Bit-Parallel Modular Multiplication

18

q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum:

0 0 0 1Carry:
0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:
……

Carry-propagation
Addition Complexity: O(n) 

1 1 1 1
0 0 0 1+
1 1 1 0Sum: XOR
0 0 0 1 ANDCarry:

Carry-save Addition
Complexity: O(1) 

BP-NTT

XOR
AND

XOR
AND

n iters



BP-NTT: Bit-Parallel Modular Multiplication

18

q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum:

0 0 0 1Carry:
0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:
……

Carry-propagation
Addition Complexity: O(n) 

1 1 1 1
0 0 0 1+
1 1 1 0Sum: XOR
0 0 0 1 ANDCarry:

Carry-save Addition
Complexity: O(1) 

BP-NTT

XOR
AND

XOR
AND

n iters



BP-NTT: Bit-Parallel Modular Multiplication

18

q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum:

0 0 0 1Carry:
0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:
……

Carry-propagation
Addition Complexity: O(n) 

1 1 1 1
0 0 0 1+
1 1 1 0Sum: XOR
0 0 0 1 ANDCarry:

Carry-save Addition
Complexity: O(1) 

BP-NTT

XOR
AND

XOR
AND

n iters

4-bit inputs

4-bit results



BP-NTT: Bit-Parallel Modular Multiplication

18

q Bit-parallel modular multiplication has unnecessary carry propagations
q Multiplication O(n2) is reduced into O(n) inspired by carry-save addition

1 1 1 1
0 0 0 1+
1 1 1 0
0 0 0 1

Sum:

0 0 0 1Carry:
0 1 1 0 0Sum:
0 0 0 1 0

0 0 0 1 0Carry:
……

Carry-propagation
Addition Complexity: O(n) 

1 1 1 1
0 0 0 1+
1 1 1 0Sum: XOR
0 0 0 1 ANDCarry:

Carry-save Addition
Complexity: O(1) 

BP-NTT

XOR
AND

XOR
AND

n iters

4-bit inputs

4-bit results

Check paper for details



BP-NTT: Overall Architecture
High-performance, low-overhead, energy-efficient and flexible NTT engine

19



BP-NTT: Overall Architecture
High-performance, low-overhead, energy-efficient and flexible NTT engine

19



BP-NTT: Overall Architecture
High-performance, low-overhead, energy-efficient and flexible NTT engine

19



BP-NTT: Overall Architecture
High-performance, low-overhead, energy-efficient and flexible NTT engine

19

Security & Flexibility



BP-NTT: Overall Architecture
High-performance, low-overhead, energy-efficient and flexible NTT engine

19

Security & Flexibility



BP-NTT: Overall Architecture
High-performance, low-overhead, energy-efficient and flexible NTT engine

19

Security & Flexibility

Throughput & Low-overhead



BP-NTT: Overall Architecture
High-performance, low-overhead, energy-efficient and flexible NTT engine

19

Security & Flexibility

Throughput & Low-overhead



BP-NTT: Overall Architecture
High-performance, low-overhead, energy-efficient and flexible NTT engine

19

Security & Flexibility

Throughput & Low-overhead

Latency



Evaluation Methodology
q Tools:

o PyMTL3 and OpenRAM for generating SRAM arrays
o Synopsys Design Compiler for extracting latencies
o Cadence Innovus for area consumption

q The array size of BP-NTT is 256×256 following the ARM Cortex-M0+ 
microcontroller

q Area consumptions of in-ReRAM baselines are from DESTINY simulator
o Optimistically estimated with only subarray area consumption excluding complex 

peripheral circuitry

20

Jiang, Shunning, et al. “PyMTL3: A Python framework for open-source hardware modeling, generation, simulation, and verification.” MICRO’20.
Guthaus, Matthew R., et al. "OpenRAM: An open-source memory compiler." ICCAD’16.
Poremba, Matt, et al. "Destiny: A tool for modeling emerging 3d nvm and edram caches." DATE’15.
Nagarajan, Karthikeyan, et al. "SHINE: A novel SHA-3 implementation using ReRAM-based in-memory computing." ISLPED’19



Comparison among Designs

21

q Results are normalized to BP-NTT



Comparison among Designs

21

q Results are normalized to BP-NTT



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT

Sapphire: Low throughput
and limited flexibility



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT

CryptoPIM: Low energy
efficiency and limited flexibility



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT

CryptoPIM: Low energy
efficiency and limited flexibility



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT

CryptoPIM: Low energy
efficiency and limited flexibility

RM-NTT:
Low energy efficiency



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT



Comparison among Designs

21

q Results are normalized to BP-NTT

0
2
4
6
8

10

Lat
en

cy

Through
put

Energy Area

Tput./
Area

Tput./
Power

BP-NTT Sapphire CryptoPIM RM-NTT MeNTT

MeNTT: High overhead
and low energy efficiency



Flexibility Analysis
q With fixed polynomial order of 256

22

q With fixed bitwidth of 16



Flexibility Analysis
q With fixed polynomial order of 256

22

q With fixed bitwidth of 16



Flexibility Analysis
q With fixed polynomial order of 256

22

q With fixed bitwidth of 16

Parallelism decreases with
increased bitwidth



Flexibility Analysis
q With fixed polynomial order of 256

22

q With fixed bitwidth of 16

Parallelism decreases with
increased bitwidth



Flexibility Analysis
q With fixed polynomial order of 256

22

q With fixed bitwidth of 16

Parallelism decreases with
increased bitwidth

Extra shift overhead is
introduced to handle large

polynomial order



Conclusion

23



Conclusion

23

BP-NTT repurposes LLC to perform bitline computing



Conclusion

23

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment



Conclusion

23

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

BP-NTT employs bit-parallel modular multiplication



Conclusion

23

BP-NTT repurposes LLC to perform bitline computing

BP-NTT uses shift-optimized data alignment

BP-NTT employs bit-parallel modular multiplication

BP-NTT can achieve up to 138x throughput-per-power 
than state-of-the-art with minimal area



Q&A

24


