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Background: Systolic Array
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Challenges for Systolic Array

* Sparse matrix multiplication is inefficient in systolic array

* Disadvantages of systolic array
* Not good at exploiting irregular parallelism

* Relatively special purpose = need software, programmer support to be a
general purpose model
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Previous work: Weight Pruning for Systolic Array

6 Block-wise Pruning (DAC ’19)

3 2 Pros:
6 2|4 = [ess computation
2 2 = No input modification

2 2 5|2 Cons:
3 3 >3 = Low compression ratio

(o]
AN~

N

N

6 Column Combining (ASPLOS ’19)

2 2 Pros:

8 = [ ess computation

= Relative high accuracy (or low compression ratio)
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Cons:

= Hard to find optimal group

= Rearrange input before computation
] | = MUX for each PE
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Solution

To fully utilize the systolic array with high compression
ratio of CNN models, we propose a hardware-software
codesign framework.

The framework outputs a flexible systolic array
structure that sustains a balance between latency and
hardware cost by:

S Row swapping for compact storing of weight matrix

S Block selection to cover the dense cluster of weights

H Systolic array multiplexing

H Genetic searching for flexible structure
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Unstructured Pruning and Row Swapping

e Unstructured pruning s chosen to achieve a high compression ratio

* Row swapping is applied for compact weight matrix
* Only rows with non-zero weights should be indexed when each column has weights
* A small number of columns should be indexed only when some columns are empty
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Block Selection

» After row swapping, weights are reorganized into a dense cluster

 To find the optimal block set to cover the weight cluster seamlessly, we
enumerate all the possible block sets according to the hardware constraint
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Microarchitecture of Systolic Array

» To support the concurrent computations of various blocks with the corresponding
inputs on systolic arrays, multiplexers are inserted into the arrays.

* To support the row swapping, a controller and selection modules are required to
schedule the multiplication results.
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Computation of Modified Systolic Array

1. Decode row indices of weights by the

controller Inputs: 567 8
Weights: 1234

2. Load weights
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Genetic Algorithm for Multiplexer Assighment

= The locations of multiplexers for different CNN models vary significantly
= A genetic algorithm is deployed to select where the multiplexers should be
inserted considering both latency and hardware cost

Algorithm 1: Genetic algorithm

START
1 Generate the initial population
C ﬁ . E 1 3 . {1vt+1} _ {17t}
2 ompute ftness: Mutation equation: z, =z, + B;
REPEAT )
Tournament selection 5, = (2u;) ¥t — 1, u; < 0.5
Crossover ]l 11— - ul)]ﬁ . w; > 0.5

Polynomial Mutation
Compute fitness: E =C;x L+ Cyx A+ Cyx W
UNTIL stopping criteria are satisfied
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Experimental Results

TABLE I
EXPERIMENTAL RESULTS COMPARED WITH THE UNSTRUCTURED PRUNING METHOD
Dataset Compression Ratio (%) Accuracy (%) Latency #Multi
CIFAR-100 Baseline Proposed Baseline |[ Propose Baseline | Proposed)| Proposed | #Mult./#PEs (%)Y
VGG-16 94.67 93.66 71.32 72.07 1 0.324 128 3.13
VGG-19 94.76 94.04 70.81 71.5 1 0.398 128 3.13
PreResNet-110 92.89 67.37 65.2 73.59 1 0.681 64 1.56
DenseNet-BC-40 90.99 75.11 67.27 71.95 1 0.291 192 4.69
DenseNet-BC-100 93.41 75.48 73.87 76.56 1 L 0.269 192 \_ 4.69
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Conclusion

J A hardware-software codesign framework is proposed to exploit systolic
arrays for the computations of various CNNs efficiently

J By row swapping, block selection, systolic array multiplexing and genetic
searching for multiplexer assignment, a flexible systolic array structure is
developed with accordingly pruned CNN models

J The experimental results show that the latency can be reduced significantly
with low hardware cost and high inference accuracy



Q&A

¢ All the questions and comments are welcomed



