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q IoT security highly relies on data integrity to authenticate identity
q In engineering, cryptographic hash algorithm is adopted for data integrity
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Example: Secure Communication
q Hashing can provide Data Integrity and Identity Authentication

o They establish a mutual Secret Key with key encapsulation mechanism (KEM)
o Alice combines Message + Secret Key to create Digest by Hashing
o Bob verifies by calculating Hash of Message + Secret Key

§ Message was not modified in transit ------ Integrity
§ Alice had the identical Secret Key ------ Authentication
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q Hardware resources are highly constrained in IoT devices
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Demand for low-latency, high-throughput and
energy-efficient hashing in IoT devices
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q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale
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Inhale can achieve up to 14x throughput-per-
area, 172x throughput-per-area-per-energy

than state-of-the-art
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o Additionally support other logic operations
§ XOR

o Provide high parallelism
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Inhale: In-place read/write strategy

15

One round of SHA-3

More than 50% of intermediate rows are saved
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High-performance, energy-efficient and low-overhead hashing engine

Security & Flexibility

Throughput

Latency & Area



Evaluation Methodology

17

q Read and write latency:
o PyMTL3 and OpenRAM for generating SRAM arrays
o Synopsys Design Compiler for extracting latencies
o Latencies of ReRAM array from DESTINY simulator

q Area and energy numbers simulated by DESTINY simulator
o Kilo Gate Equivalent (KGE) is used to decouple the area overhead from the

technology node

q For apples-to-apples comparison between different designs
o Inhale and SHINE in 28nm ReRAM and SRAM are all evaluated

Jiang, Shunning, et al. “PyMTL3: A Python framework for open-source hardware modeling, generation, simulation, and verification.” MICRO’20.
Guthaus, Matthew R., et al. "OpenRAM: An open-source memory compiler." ICCAD’16.
Poremba, Matt, et al. "Destiny: A tool for modeling emerging 3d nvm and edram caches." DATE’15.
Nagarajan, Karthikeyan, et al. "SHINE: A novel SHA-3 implementation using ReRAM-based in-memory computing." ISLPED’19
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q With power constraint

q Without power constraint
IoT devices have

tight power budget

SHINE hits power
earlier than Inhale
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