
Inhale: Enabling High-Performance and Energy-
Efficient In-SRAM Cryptographic Hash for IoT

Jingyao Zhang, Elaheh Sadredini

2022 IEEE/ACM International Conference on Computer-Aided Design



Why IoT security is crucial

2

Healthcare industry



Why IoT security is crucial

2

Healthcare industry Home Government



Why IoT security is crucial

2

Healthcare industry

ECGmonitor

Home

Smart lock

Government

Security camera



IoT attacks are happening now!

3

IoT security is urgent!



IoT attacks are happening now!

3

IoT security is urgent!



IoT attacks are happening now!

3

IoT security is urgent!



IoT attacks are happening now!

3

IoT security is urgent!



IoT attacks are happening now!

3

IoT security is urgent!



IoT attacks are happening now!

3

IoT security is urgent!



IoT attacks are happening now!

3

IoT security is urgent!



Foundation of IoT security
q IoT security highly relies on data integrity to authenticate identity
q In engineering, cryptographic hash algorithm is adopted for data integrity
q Practically infeasible to invert or reverse the hash computation

4



Foundation of IoT security
q IoT security highly relies on data integrity to authenticate identity
q In engineering, cryptographic hash algorithm is adopted for data integrity
q Practically infeasible to invert or reverse the hash computation

4



Foundation of IoT security
q IoT security highly relies on data integrity to authenticate identity
q In engineering, cryptographic hash algorithm is adopted for data integrity
q Practically infeasible to invert or reverse the hash computation

4



Foundation of IoT security
q IoT security highly relies on data integrity to authenticate identity
q In engineering, cryptographic hash algorithm is adopted for data integrity
q Practically infeasible to invert or reverse the hash computation

4



Example: Secure Communication
q Hashing can provide Data Integrity and Identity Authentication

o They establish a mutual Secret Key with key encapsulation mechanism (KEM)
o Alice combines Message + Secret Key to create Digest by Hashing
o Bob verifies by calculating Hash of Message + Secret Key

§ Message was not modified in transit ------ Integrity
§ Alice had the identical Secret Key ------ Authentication

5

Alice Bob

Interceptor
https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s



Example: Secure Communication
q Hashing can provide Data Integrity and Identity Authentication

o They establish a mutual Secret Key with key encapsulation mechanism (KEM)
o Alice combines Message + Secret Key to create Digest by Hashing
o Bob verifies by calculating Hash of Message + Secret Key

§ Message was not modified in transit ------ Integrity
§ Alice had the identical Secret Key ------ Authentication

5

Alice Bob

Interceptor
https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s



Example: Secure Communication
q Hashing can provide Data Integrity and Identity Authentication

o They establish a mutual Secret Key with key encapsulation mechanism (KEM)
o Alice combines Message + Secret Key to create Digest by Hashing
o Bob verifies by calculating Hash of Message + Secret Key

§ Message was not modified in transit ------ Integrity
§ Alice had the identical Secret Key ------ Authentication

5

Alice Bob

Interceptor
https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s



Example: Secure Communication
q Hashing can provide Data Integrity and Identity Authentication

o They establish a mutual Secret Key with key encapsulation mechanism (KEM)
o Alice combines Message + Secret Key to create Digest by Hashing
o Bob verifies by calculating Hash of Message + Secret Key

§ Message was not modified in transit ------ Integrity
§ Alice had the identical Secret Key ------ Authentication

5

Alice Bob

Interceptor
https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s



Example: Secure Communication
q Hashing can provide Data Integrity and Identity Authentication

o They establish a mutual Secret Key with key encapsulation mechanism (KEM)
o Alice combines Message + Secret Key to create Digest by Hashing
o Bob verifies by calculating Hash of Message + Secret Key

§ Message was not modified in transit ------ Integrity
§ Alice had the identical Secret Key ------ Authentication

5

Alice Bob

Interceptor
https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s



Example: Secure Communication
q Hashing can provide Data Integrity and Identity Authentication

o They establish a mutual Secret Key with key encapsulation mechanism (KEM)
o Alice combines Message + Secret Key to create Digest by Hashing
o Bob verifies by calculating Hash of Message + Secret Key

§ Message was not modified in transit ------ Integrity
§ Alice had the identical Secret Key ------ Authentication

5

Alice Bob

Interceptor
https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s



Example: Secure Communication
q Hashing can provide Data Integrity and Identity Authentication

o They establish a mutual Secret Key with key encapsulation mechanism (KEM)
o Alice combines Message + Secret Key to create Digest by Hashing
o Bob verifies by calculating Hash of Message + Secret Key

§ Message was not modified in transit ------ Integrity
§ Alice had the identical Secret Key ------ Authentication

5

Alice Bob

Interceptor
https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s



Example: Secure Communication
q Hashing can provide Data Integrity and Identity Authentication

o They establish a mutual Secret Key with key encapsulation mechanism (KEM)
o Alice combines Message + Secret Key to create Digest by Hashing
o Bob verifies by calculating Hash of Message + Secret Key

§ Message was not modified in transit ------ Integrity
§ Alice had the identical Secret Key ------ Authentication

5

Alice Bob

Interceptor
https://www.youtube.com/watch?v=doN3lzzNEIM&t=96s



Cryptographic hash algorithm
q IoT security highly relies on data integrity to authenticate identity
q In engineering, cryptographic hash algorithm is adopted for data integrity
q Practically infeasible to invert or reverse the hash computation

6



Cryptographic hash algorithm
q IoT security highly relies on data integrity to authenticate identity
q In engineering, cryptographic hash algorithm is adopted for data integrity
q Practically infeasible to invert or reverse the hash computation

6

Transport Layer Security
in IoT (Amazon IoT Core)



Cryptographic hash algorithm
q IoT security highly relies on data integrity to authenticate identity
q In engineering, cryptographic hash algorithm is adopted for data integrity
q Practically infeasible to invert or reverse the hash computation

6

Transport Layer Security
in IoT (Amazon IoT Core)

Quantum-resistant TLS
in IoT



More challenges in IoT Era

7

q Attackers can effortlessly obtain physical access to edge devices
q Hardware resources are highly constrained in IoT devices
q Performance matters especially in internet of vehicles
q Energy consumption matters since IoT is powered by battery



More challenges in IoT Era

7

q Attackers can effortlessly obtain physical access to edge devices
q Hardware resources are highly constrained in IoT devices
q Performance matters especially in internet of vehicles
q Energy consumption matters since IoT is powered by battery



More challenges in IoT Era

7

q Attackers can effortlessly obtain physical access to edge devices
q Hardware resources are highly constrained in IoT devices
q Performance matters especially in internet of vehicles
q Energy consumption matters since IoT is powered by battery



More challenges in IoT Era

7

q Attackers can effortlessly obtain physical access to edge devices
q Hardware resources are highly constrained in IoT devices
q Performance matters especially in internet of vehicles
q Energy consumption matters since IoT is powered by battery



More challenges in IoT Era

7

q Attackers can effortlessly obtain physical access to edge devices
q Hardware resources are highly constrained in IoT devices
q Performance matters especially in internet of vehicles
q Energy consumption matters since IoT is powered by battery



More challenges in IoT Era

7

q Attackers can effortlessly obtain physical access to edge devices
q Hardware resources are highly constrained in IoT devices
q Performance matters especially in internet of vehicles
q Energy consumption matters since IoT is powered by battery

Demand for low-latency, high-throughput and
energy-efficient hashing in IoT devices



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality



△ Challenges: Performance, Energy, Area

8

q Dedicated hardware engine on chip (ISSCC’16)
o Low throughput
o High area overhead on chip

q General-purpose in-memory acceleration (JSSC’18)
o High latency
o Low throughput per unit area

q Dedicated in-memory acceleration (ISLPED’19)
o High area overhead
o Low generality

Demand for low-latency, high-throughput,
energy-efficient, low-overhead hashing in IoT



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9



q On-chip Hashing
o Perform all the operations within the chip (trusted computing base)

q Bitline Computing
o Repurpose SRAM subarrays into active large vector computation units

q Shift-optimized Data Alignment
o Implicitly perform inter-lane shift operations via the controller

q In-Place Read/Write Strategy
o Carefully design read/write order and address to save memory capacity

q On-chip Hashing -> high security level

q Bitline Computing -> high throughput

q Shift-optimized Data Alignment -> low latency, energy

q In-Place Read/Write Strategy -> low overhead

Overview of Our Solution: Inhale

9

Inhale can achieve up to 14x throughput-per-
area, 172x throughput-per-area-per-energy

than state-of-the-art



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10

SenseAmplifier Design

[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Bitline Computing used in Inhale
q Bitline Computing [1]

o Activate two wordlines simultaneously
o Inherently perform logic operations

§ NOR
§ AND

o Additionally support other logic operations
§ XOR

o Provide high parallelism

10

SenseAmplifier Design

[1] Aga, Shaizeen, et al. “Compute caches.” HPCA 2017



Motivation for shift-optimization

11

q 76% operations of SHA-3 are shifting in a vanilla PIM architecture
q 90% shifting operations are inter-lane



Motivation for shift-optimization

11

q 76% operations of SHA-3 are shifting in a vanilla PIM architecture
q 90% shifting operations are inter-lane



Motivation for shift-optimization

11

q 76% operations of SHA-3 are shifting in a vanilla PIM architecture
q 90% shifting operations are inter-lane



Motivation for shift-optimization

11

1600-bit State
in SHA3

64-bit
Lane

q 76% operations of SHA-3 are shifting in a vanilla PIM architecture
q 90% shifting operations are inter-lane



Motivation for shift-optimization

11

1600-bit State
in SHA3

64-bit
Lane

q 76% operations of SHA-3 are shifting in a vanilla PIM architecture
q 90% shifting operations are inter-lane

Inter-lane Shift



Motivation for shift-optimization

11

1600-bit State
in SHA3

64-bit
Lane

q 76% operations of SHA-3 are shifting in a vanilla PIM architecture
q 90% shifting operations are inter-lane

Inter-lane Shift Intra-lane Shift



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

Two-lane
XOR



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

Two-lane
XOR

First inter-lane shift, then one XOR



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

Two-lane
XOR

First inter-lane shift, then one XOR



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

First inter-lane shift, then one XOR

One XOR



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18) SRAM subarray (ISCA’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

First inter-lane shift, then one XOR

One XOR



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18) SRAM subarray (ISCA’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

First inter-lane shift, then one XOR

One XOR



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18) SRAM subarray (ISCA’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

First inter-lane shift, then one XOR

Two-lane XOR
w/o shift

One XOR



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18) SRAM subarray (ISCA’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

First inter-lane shift, then one XOR

Two-lane XOR
w/o shift

One XOR



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18) SRAM subarray (ISCA’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

First inter-lane shift, then one XOR

Two-lane XOR
w/o shift

64 XORs
One XOR



Prior works
q Existing Data Alignments

o JSSC’18:
§ highly utilize the parallelism
§ hard for inter-lane and intra-

lane shift

12
SRAM subarray (JSSC’18) SRAM subarray (ISCA’18)

o ISCA’18: 
§ shift implicitly
§ high latency (>10x JSSC’18)
§ high control overhead 

First inter-lane shift, then one XOR

Two-lane XOR
w/o shift

64 XORs
One XOR



Inhale: Shift-optimized Data Alignment

13

q Shift-optimized Data Alignment
o Place lane per row
o Inter-lane shifts are costless with the controller
o Intra-lane shifts are performed with small shifters
o Well balance the performance and overhead

ISCA’18
JSSC’18

320 bits

1 bit



Inhale: Shift-optimized Data Alignment

13

q Shift-optimized Data Alignment
o Place lane per row
o Inter-lane shifts are costless with the controller
o Intra-lane shifts are performed with small shifters
o Well balance the performance and overhead

ISCA’18
JSSC’18

320 bits

1 bit



Inhale: Shift-optimized Data Alignment

13

q Shift-optimized Data Alignment
o Place lane per row
o Inter-lane shifts are costless with the controller
o Intra-lane shifts are performed with small shifters
o Well balance the performance and overhead

ISCA’18
JSSC’18Proposed Inhale

64 bits

320 bits

1 bit



Inhale: Shift-optimized Data Alignment

13

q Shift-optimized Data Alignment
o Place lane per row
o Inter-lane shifts are costless with the controller
o Intra-lane shifts are performed with small shifters
o Well balance the performance and overhead

ISCA’18
JSSC’18Proposed Inhale

64 bits

320 bits

1 bit



Inhale: Shift-optimized Data Alignment

13

q Shift-optimized Data Alignment
o Place lane per row
o Inter-lane shifts are costless with the controller
o Intra-lane shifts are performed with small shifters
o Well balance the performance and overhead

ISCA’18
JSSC’18Proposed Inhale

First inter-lane shift, then one XOR
64 bits

320 bits

1 bit



Inhale: Shift-optimized Data Alignment

13

q Shift-optimized Data Alignment
o Place lane per row
o Inter-lane shifts are costless with the controller
o Intra-lane shifts are performed with small shifters
o Well balance the performance and overhead

ISCA’18
JSSC’18Proposed Inhale

First inter-lane shift, then one XOR

64
XORs

64 bits

320 bits

1 bit



Inhale: Shift-optimized Data Alignment

13

q Shift-optimized Data Alignment
o Place lane per row
o Inter-lane shifts are costless with the controller
o Intra-lane shifts are performed with small shifters
o Well balance the performance and overhead

ISCA’18
JSSC’18Proposed Inhale

First inter-lane shift, then one XOR

64
XORsOne XOR

w/o shift

64 bits

320 bits

1 bit



Inhale: Shift-optimized Data Alignment

13

q Shift-optimized Data Alignment
o Place lane per row
o Inter-lane shifts are costless with the controller
o Intra-lane shifts are performed with small shifters
o Well balance the performance and overhead

ISCA’18
JSSC’18Proposed Inhale

First inter-lane shift, then one XOR

64
XORsOne XOR

w/o shift

64 bits

320 bits

1 bit



Inhale: Shift-optimized Data Alignment

13

q Shift-optimized Data Alignment
o Place lane per row
o Inter-lane shifts are costless with the controller
o Intra-lane shifts are performed with small shifters
o Well balance the performance and overhead

ISCA’18
JSSC’18Proposed Inhale

First inter-lane shift, then one XOR

64
XORsOne XOR

w/o shift

64 bits

320 bits

1 bit



Inhale: In-place read/write strategy

14

q In-place read/write strategy
o Read/write order and address are carefully designed to save memory capacity and

maintain generality of our solution in varied IoT devices



Inhale: In-place read/write strategy

14

q In-place read/write strategy
o Read/write order and address are carefully designed to save memory capacity and

maintain generality of our solution in varied IoT devices



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

In-place
operation



Inhale: In-place read/write strategy

15

One round of SHA-3

More than 50% of intermediate rows are saved



Inhale: Overall Architecture

16

High-performance, energy-efficient and low-overhead hashing engine



Inhale: Overall Architecture

16

High-performance, energy-efficient and low-overhead hashing engine

Security & Flexibility



Inhale: Overall Architecture

16

High-performance, energy-efficient and low-overhead hashing engine

Security & Flexibility



Inhale: Overall Architecture

16

High-performance, energy-efficient and low-overhead hashing engine

Security & Flexibility

Latency & Area



Inhale: Overall Architecture

16

High-performance, energy-efficient and low-overhead hashing engine

Security & Flexibility

Throughput

Latency & Area



Evaluation Methodology

17

q Read and write latency:
o PyMTL3 and OpenRAM for generating SRAM arrays
o Synopsys Design Compiler for extracting latencies
o Latencies of ReRAM array from DESTINY simulator

q Area and energy numbers simulated by DESTINY simulator
o Kilo Gate Equivalent (KGE) is used to decouple the area overhead from the

technology node

q For apples-to-apples comparison between different designs
o Inhale and SHINE in 28nm ReRAM and SRAM are all evaluated

Jiang, Shunning, et al. “PyMTL3: A Python framework for open-source hardware modeling, generation, simulation, and verification.” MICRO’20.
Guthaus, Matthew R., et al. "OpenRAM: An open-source memory compiler." ICCAD’16.
Poremba, Matt, et al. "Destiny: A tool for modeling emerging 3d nvm and edram caches." DATE’15.
Nagarajan, Karthikeyan, et al. "SHINE: A novel SHA-3 implementation using ReRAM-based in-memory computing." ISLPED’19



Comparison of different designs

18



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

In-memory computing brings
advantages



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

Fewer traversal time on
bitlines



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)

Minimal modification,
higher frequency



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)

Dedicated multi-bit
XOR logic



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)

Inhale has smaller
area



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)

70x fewer cells & 131x
fewer peripheral logics



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)



Comparison of different designs

18

1

100

10000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

In-memory over ASICs/FPGAs Inhale-Opt over Inhale-Flex

0.1

10

1000

Area Latency Tput. Tput./Area Energy Tput./Area/En.

Inhale over Recryptor (JSSC'18) Inhale over SHINE (ISLPED'18)

Almost no inter-subarray
data movement



Performance Scaling

19

q With power constraint

q Without power constraint



Performance Scaling

19

q With power constraint

q Without power constraint



Performance Scaling

19

q With power constraint

q Without power constraint



Performance Scaling

19

q With power constraint

q Without power constraint



Performance Scaling

19

q With power constraint

q Without power constraint



Performance Scaling

19

q With power constraint

q Without power constraint

SHINE hits power
earlier than Inhale



Performance Scaling

19

q With power constraint

q Without power constraint

SHINE hits power
earlier than Inhale



Performance Scaling

19

q With power constraint

q Without power constraint

SHINE hits power
earlier than Inhale



Performance Scaling

19

q With power constraint

q Without power constraint

SHINE hits power
earlier than Inhale



Performance Scaling

19

q With power constraint

q Without power constraint

SHINE hits power
earlier than Inhale



Performance Scaling

19

q With power constraint

q Without power constraint
IoT devices have

tight power budget

SHINE hits power
earlier than Inhale



Conclusion

20

q Inhale provides high performance, energy efficiency, low overhead all
by proposing an in-SRAM hashing engine

q Shift-optimized data alignment and in-place read/write strategy are
proposed to efficiently map the algorithm to the Inhale architecture

q Inhale can achieve up to 14x throughput-per-area, 172x throughput-per-
area-per-energy than state-of-the-art

q Future work is providing an end-to-end solution for IoT security, and
supporting other cryptographic operations



Conclusion

20

q Inhale provides high performance, energy efficiency, low overhead all
by proposing an in-SRAM hashing engine

q Shift-optimized data alignment and in-place read/write strategy are
proposed to efficiently map the algorithm to the Inhale architecture

q Inhale can achieve up to 14x throughput-per-area, 172x throughput-per-
area-per-energy than state-of-the-art

q Future work is providing an end-to-end solution for IoT security, and
supporting other cryptographic operations



Conclusion

20

q Inhale provides high performance, energy efficiency, low overhead all
by proposing an in-SRAM hashing engine

q Shift-optimized data alignment and in-place read/write strategy are
proposed to efficiently map the algorithm to the Inhale architecture

q Inhale can achieve up to 14x throughput-per-area, 172x throughput-per-
area-per-energy than state-of-the-art

q Future work is providing an end-to-end solution for IoT security, and
supporting other cryptographic operations



Conclusion

20

q Inhale provides high performance, energy efficiency, low overhead all
by proposing an in-SRAM hashing engine

q Shift-optimized data alignment and in-place read/write strategy are
proposed to efficiently map the algorithm to the Inhale architecture

q Inhale can achieve up to 14x throughput-per-area, 172x throughput-per-
area-per-energy than state-of-the-art

q Future work is providing an end-to-end solution for IoT security, and
supporting other cryptographic operations



Conclusion

20

q Inhale provides high performance, energy efficiency, low overhead all
by proposing an in-SRAM hashing engine

q Shift-optimized data alignment and in-place read/write strategy are
proposed to efficiently map the algorithm to the Inhale architecture

q Inhale can achieve up to 14x throughput-per-area, 172x throughput-per-
area-per-energy than state-of-the-art

q Future work is providing an end-to-end solution for IoT security, and
supporting other cryptographic operations



Q&A

21


