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Data Encryption is Crucial for
Many Organizations
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Motivating Example: Face Recognition

Q However, memory and bus are vulnerable

A Advanced Encryption Standard (AES) can provide data confidentiality

AES Memory

Demand for high-performance low-overhead AES



A Challenges: Performance, Area, Security

0 Dedicated hardware engine on chip (JSSC '11)

o Low throughput
o High area consumption on chip

0 In-memory bulk encryption (DATE '18)
o Low security level
o High latency
o Low throughput per unit area

2 Near-memory encryption (ISCA "17)
o More surface exposed to attackers
o High latency
o Large capacity overhead
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A Challenges: Performance, Area, Security

0 Dedicated hardware engine on chip (JSSC '11)
o Low throughput
o High area consumption on chip

6 -

On-chip enqgine

Demand for low-latency, high-throughput,
low-overhead, on-chip AES

0 Near-memory encryption (ISCA "17)
o More surface exposed to attackers
o High latency
o Large capacity overhead
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Overview of Our Solution: Sealer
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On-chip Encryption -> high security level

Bitline Computing -> high throughput

Effective Data Organization -> low area overhead

Stage Fusion -> low latency
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Overview of Our Solution: Sealer

a On-chip Encryption -> high security level
a Bitline Computing -> high throughput
QO Effective Data Organization -> low area overhead
O Stage Fusion -> low latency
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Sealer can achieve up to 323x performance, 91x
throughput-per-area than state-of-the-art
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Sealer: Bitline Computing

a Bitline Computing [1]
o Activate two wordlines simultaneously

BLB Vref BL

o Inherently perform logic operations
= NOR
= AND
o Additionally support other logic operations
= XOR
= 8-bit SHIFT
o Provide high parallelism

Sense Amplifier Design

[1] Aga, Shaizeen, et al. "Compute caches.” 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2017.



Sealer: Effective Data Organization

O Effective Data Organization
o Integrate S-box into SRAM
o Reduce hardware overhead

o Enable to fuse computation stages
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Sealer: Stage Fusion

Q Stage Fusion
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Sealer: Stage Fusion

Q Stage Fusion
o Read and shift one byte

AES algorithm flow chart

o Reduce latency _-7
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Sealer: Overall Architecture

A High-Performance and Low-Overhead Memory Encryption
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Evaluation Methodology

NVSim simulator for area consumption
DESTINY simulator for energy and power consumption

0
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A Cycle numbers for bitline computing are from [z, 2]
0

Baselines:

o On-chip dedicated engines
= EE-1[3], EE-2[4]

o Off-chip in-memory engines
=  AIM-NVM [5], DW-AES [6]

o On-chip in-memory engine (apples-to-apples comparison)
=  AIM-SRAM[5]

[1] Shaizeen Aga et al. 2017. Compute Caches. In HPCA.

[2] Arun Subramaniyan et al. 2017. Cache Automaton. In MICRO.

[3] Design and implementation of low-area and low-power AES encryption hardware core. In DSD.

[4] 53Gbps native GF(24 ) 2 composite-field AES-encrypt/decrypt accelerator for content protection in 45nm high-performance microprocessors. In VLSIC.

[5] Securing emerging nonvolatile main memory with fast and energy-efficient AES in-memory implementation. TVLSI.

[6] DW-AES: a domain-wall nanowire-based AES for high throughput and energy-efficient data encryption in non-volatile memory. IEEE TIFS. 13



Latency

Q On-chip dedicated engines are limited by low parallelism

a Architectural contribution

o Effective data organization > No LUT query
o Stage fusion -> Data movement reduction

a Technology contribution
o Frequency

m 24 data blocks ®m 192 data blocks
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Latency

Q On-chip dedicated engines are limited by low parallelism

a Architectural contribution

o Effective data organization > No LUT query
o Stage fusion -> Data movement reduction

Q Technology contribution

o Frequency ® AddRoundKey ® SubBytes = ShiftRows
¥ Fused SubBytes and ShiftRows B MixColumns
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Throughput/Area, Energy & Power

Energy (uJ)
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_ower latency, high parallelism -> higher throughput
_east modification to SRAM arrays (< 1.55%) -> least area consumption

~ewer operations -> lower energy, higher utilization -> higher power
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Throughput/Area, Energy & Power

Energy

_ower latency, high parallelism -> higher throughput
_east modification to SRAM arrays (< 1.55%) -> least area consumption

~ewer operations -> lower energy, higher utilization -> higher power

Sealer
AIM-NVM
AIM-SRAM

Sealer provides a high-performance and low-
overhead on-chip encryption solution
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Conclusion

Q Sealer provides low-latency, high-throughput, low-overhead, high-
security all by proposing an in-SRAM AES encryption solution

Q Effective data organization and stage fusion are proposed to
efficiently map the algorithm to the Sealer architecture

Q Sealer can achieve up to 323x performance, 9a1x throughput-per-area
than state-of-the-art solutions with < 1.55% modification to
conventional SRAM
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