Sealer: In-SRAM AES for High-Performance and Low-Overhead Memory Encryption

Jingyao Zhang^{*}, Hoda Naghibijouybari⁺, Elaheh Sadredini^{*}

*University of California, Riverside *Binghamton University

Data Encryption is Crucial for Many Organizations

Hospital

Medical records

Bank

Credit or debit cards

Government

Faces

Motivating Example: Face Recognition

- □ However, memory and bus are vulnerable
- □ Advanced Encryption Standard (AES) can provide data confidentiality

Demand for high-performance low-overhead AES

△ Challenges: Performance, Area, Security

Dedicated hardware engine on chip (JSSC '11)

- Low throughput
- High area consumption on chip

In-memory bulk encryption (DATE '18)

- Low security level
- High latency
- Low throughput per unit area

Near-memory encryption (ISCA '17)

- More surface exposed to attackers
- High latency
- Large capacity overhead

△ Challenges: Performance, Area, Security

Dedicated hardware engine on chip (JSSC '11)

- Low throughput
- High area consumption on chip

Demand for low-latency, high-throughput, low-overhead, on-chip AES

Near-memory encryption (ISCA '17)

- More surface exposed to attackers
- High latency
- Large capacity overhead

Overview of Our Solution: Sealer

- On-chip Encryption -> high security level
- **Bitline Computing -> high throughput**
- Effective Data Organization -> low area overhead
- **Stage Fusion -> low latency**

Overview of Our Solution: Sealer

- On-chip Encryption -> high security level
- Bitline Computing -> high throughput
- Effective Data Organization -> low area overhead
- Stage Fusion -> low latency

Sealer: Bitline Computing

Bitline Computing [1]

- Activate two wordlines simultaneously
- Inherently perform logic operations
 - NOR
 - AND
- Additionally support other logic operations
 - XOR
 - 8-bit SHIFT
- Provide high parallelism

Sealer: Effective Data Organization

Effective Data Organization

- Integrate S-box into SRAM
- Reduce hardware overhead
- Enable to fuse computation stages

Sealer: Stage Fusion

Stage Fusion

Sealer: Stage Fusion

Stage Fusion

AES algorithm flow chart

AES algorithm flow chart

Sealer: Overall Architecture

High-Performance and Low-Overhead Memory Encryption

Evaluation Methodology

- NVSim simulator for area consumption
- DESTINY simulator for energy and power consumption
- Cycle numbers for bitline computing are from [1,2]
- Baselines:
 - On-chip dedicated engines
 - EE-1 [3], EE-2 [4]
 - Off-chip in-memory engines
 - AIM-NVM [5], DW-AES [6]
 - On-chip in-memory engine (apples-to-apples comparison)
 - AIM-SRAM[5]
- [1] Shaizeen Aga et al. 2017. Compute Caches. In HPCA.
- [2] Arun Subramaniyan et al. 2017. Cache Automaton. In MICRO.
- [3] Design and implementation of low-area and low-power AES encryption hardware core. In DSD.
- [4] 53Gbps native GF(24) 2 composite-field AES-encrypt/decrypt accelerator for content protection in 45nm high-performance microprocessors. In VLSIC.
- [5] Securing emerging nonvolatile main memory with fast and energy-efficient AES in-memory implementation. TVLSI.
- [6] DW-AES: a domain-wall nanowire-based AES for high throughput and energy-efficient data encryption in non-volatile memory. IEEE TIFS.

- On-chip dedicated engines are limited by low parallelism
- Architectural contribution
 - Effective data organization > No LUT query
 - Stage fusion -> Data movement reduction
- Technology contribution
 - Frequency

- On-chip dedicated engines are limited by low parallelism
- Architectural contribution
 - Effective data organization > No LUT query
 - Stage fusion -> Data movement reduction
- □ Technology contribution

Throughput/Area, Energy & Power

- Lower latency, high parallelism -> higher throughput
- □ Least modification to SRAM arrays (< 1.55%) -> least area consumption
- Fewer operations -> lower energy, higher utilization -> higher power

Throughput/Area, Energy & Power

- Lower latency, high parallelism -> higher throughput
- □ Least modification to SRAM arrays (< 1.55%) -> least area consumption
- Fewer operations -> lower energy, higher utilization -> higher power

Sealer provides a high-performance and lowoverhead on-chip encryption solution

Conclusion

Sealer provides low-latency, high-throughput, low-overhead, high-security all by proposing an in-SRAM AES encryption solution

 Effective data organization and stage fusion are proposed to efficiently map the algorithm to the Sealer architecture

Sealer can achieve up to 323x performance, 91x throughput-per-area than state-of-the-art solutions with < 1.55% modification to conventional SRAM

